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Abstract  The buckling and vibration of thick. orthotropic faminated composite shells is modelled
using a simple layerwise higher-order theory. The theory accounts for a cubic variation of both the
in-plane displacements and the transverse shear stresses within each layer, the latter being zero at
the free surfaces without the need for shear correction factors. By imposing the continuity of the in-
plane displacements and the transverse shear stresses at the interfaces. the number of variables is
shown to be the same as that given by the FSDT. irrespective of the number of layers considered.
A non-dimensionalized parameter called the General Performance Index is defined in order to assess
the overall performance of the models based on their flexural frequencies and the largest component
of stress within the laminate. Numerical results for moderately short, one-, two- and three-layer
shell panels are obtained for a range of base layer-to-core modulus of elasticity ratios. The nor-
malized natural frequencies and stresses of the present theory are compared with a simple layerwise
first-order theory and two other global higher-order theories that despite their similarity, indicate
some interesting differences. The critical buckling loads are also given for a range of modulus and
thickness ratios. Results indicate the present theory generally performs better over a range of the
parameters mentioned predicting conservatively lower natural frequencies. smaller buckling loads
and larger stresses for ssmmetric shells.

INTRODUCTION

The Classical Theory of Shells (CST) was proposed by Love (1888) for the deformation
and oscillation of shells with the assumptions that the shell is thin. deflections are small,
transverse normal stress is negligible and that normals to the reference surface remain
normal to it without any change in length during motion. Four decades later, Donnell
(1933) developed a set of equations from the CST for cylindrical shells by making the
simplifying assumptions that the transverse shear force (0, is of a much smaller order than
other forces in the circumferential direction, and that the in-plane displacement u, in the
same direction has negligible effect on the curvature and twist of the shell. These modi-
fications were tested for their range of validity by Hoff (1933) using the theory of Fliigge
(1932)as a benchmark. The CST was not used in this verification owing to the contradictions
associated with the equality of the shearing forces V. and N.; as well the shearing moments
M, and M,,. These contradictions do not appear for spherical shells and circular plates
due to the nature of their geometries. However. since Donnell’s (1933) equations were not
derived for any of these cases, the more consistent Fliigge (1932) equations for cylindrical
shells were used. For purposes of making easy comparisons, the original Fligge (1932)
equations were recast by Kempner (1955) into a form similar to that of Donnell (1933). In
doing so. all terms of the order of (4/R)” and higher were neglected in the Fliigge-Kempner
equations in order to make a credible comparison with the Donnell (1933) equivalent. The
results of Hoff (1955) showed that the Donnell (1933) equations agreed satisfactorily with
the Fligge-Kempner equations only for short, closed shells and for higher modes in the
circumferential direction. Similar results for the vibration of cross-ply cylindrical shells was
obtained by Soldatos (1984) in which Donnell’s (1933) equations overestimated the flexural
frequencies when compared to results of Love (1952). Fliigge (1973) and Sanders (1959)
for long, shallow panels. Morely (1959) proposed a set of equations that improved Donnell’s
(1933) first approximation espectally for long cylinders under edge or distributed loading.
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While these simplifications and improvements on the CST were taking place, other
researchers, notably Epstein (1942) chose to abandon energy considerations and use the
equations of equilibrium from Newton’s laws. Kennard (1953) made use of Epstein’s (1942)
fundamental work to develop distributions of displacements and stresses. In this treatment,
all derivatives of the displacements and stresses with respect to the radial direction were
eliminated by expressing these quantities as a Taylor series in the thickness coordinate. The
unknown variables in these series are functions of the in-plane orthogonal coordinates only,
as they pertain to the reference surface. Thus the original differential equations were
converted to a set of algebraic equations. In what may be considered to be a complete
analysis, terms up to the second order of the series for displacements and stresses were
included involving some 12 equations and 12 unknown variables. Computationwise, it
would be a rather cumbersome if terms of the cubic order were added to improve accuracy
as an additional six unknown variables would be introduced requiring Kennard’s (1953)
equations (9a—c) and (10a—c). to be differentiated once again with respect to the thickness
coordinate in order to give six more equations which include zero-order values of the
additional unknown variables.

A period followed in which first-order theories accounting for transverse shear defor-
mation and rotary inertia were popular among researchers. Mirsky and Herrmann (1956)
proposed such a first-order theory for the nonaxially symmetric motions of thin cylindrical
shells. In the study of torsionless axisymmetric wave propagation in an infinite cylindrical
shell, Naghdi and Cooper (1956) independantly derived two general systems of equations
of motion one of which is similar to that obtained by Mirsky and Herrmann (1956). The
two systems of equations are such that, one of these reduces to the set by Love (1888) and
the other to that given by Donnell (1933) when the transverse shear deformation and rotary
inertia terms were removed.

With the advancement in technology, came the use of new materials of superior
strength whose properties were directional. This led to investigations by Mirsky (1964) into
the effects of transverse shear deformation. rotary inertia and thickness deformation on the
vibrations of thick, orthotropic shells. In order to assess the accuracy of this model,
comparisons were made with exact elasticity results for isotropic materials. It was found
that solutions to the first four modes compared well and, therefore, it was assumed that
solutions for the orthotropic case would give the same order of accuracy.

In order to achieve the desired strength and stiffness in certain directions, composite
materials were laminated and stacked in chosen sequences. Dong and Tso (1972) derived a
first-order transverse shear deformation theory for such laminated orthotropic shells com-
plete with shear correction factors. Di Sciuva (1987) extended the layerwise theory of Waltz
and Vinson (1976) to multilayered anisotropic composite shells in order to account for
realistic continuity conditions at the interfaces. This multilayered anisotropic shell theory
has been applied by Di Sciuva and Carrera (1992) to the elastodynamic behaviour of
thick, symmetrically laminated, anisotropic circular cylindrical shells. Numerical results for
simply-supported circular cylindrical shells were found to compare well with those obtained
by Reddy and Liu (1985), irrespective of radius-to-length and length-to-thickness ratios.

Sun and Whitney (1974) were among the few researchers who included higher-order
terms in modelling vibrations of laminated composite cylindrical shells. The in-plane dis-
placement fields remained linear while the distribution in the transverse direction was
quadratic, giving rise to certain additional modes that appeared only at higher frequencies.
Results from this theory when compared with Flugge's (1967), showed that at progressively
large thickness to length ratios. the discrepancy varied rapidly due to the significantly
increasing transverse shear deformation. For the first mode, differences were observed to be
more significant for four-layered. angle-ply laminates than {or the corresponding symmetric
cross-ply ones. Bhimaraddi (1984) proposed a higher-order theory in which in-plane dis-
placements were cubic in distribution while the transverse deflection was invariant with
thickness. This resulted in parabolic variation of transverse shear stresses with zero values
at the free surfaces without the need for shear correction factors. In a separate development,
Reddy and Liu (1985) derived a similar model in which all terms of the order thickness
coordinate to radius were neglected with the exception of those appearing as the coefficient
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Fig. 1.

of the variables, u and v. A theory accounting for the nonlinear variation of the in-plane
displacement field through the thickness of the laminated has been recently proposed by
Di Sciuva (1992). The geometric and stress continuity conditions at the interfaces and the
static condition of zero transverse shear stresses at the free surfaces were fulfilled a priori,
at least for symmetric laminates. In a separate development, another theory accounting for
interlaminae continuity conditions was put forward earlier by Librescu and Schmidt (1990)
and applied to anisotropic composite laminated shells.

It is the objective of this paper to apply a variationally consistent simple higher-order
layerwise theory to the vibration of orthotropic shells. The model accounts for a cubic
variation in both the in-plane displacements and transverse shear stresses with the latter
giving zero values at the top and bottom fibres without the need for shear correction factors.
This theory was applied by Xavier ez a/. (1993) to the cylindrical bending of cylindrical shells
showing excellent agreement with exact solutions given by Ren (1987), especially for sand-
wich type cross-ply shells. In this paper, the results of the present theory as applied to vibra-
tions is compared to the solutions of the global higher-order theories of Bhimaraddi (1984)
and Reddy and Liu (1985), and the simple first-order layerwise theory of Di Sciuva (1987).

THEORY

A laminated composite cylindrical shell with n layers, thickness 4 and length /is shown
in Fig. 1. The derivation of the theory that follows is carried out such that it is applicable
to any shell of arbitrary geometry. For such a shell, the assumed displacement field for each

layer is given by
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where ), uf, w. %, ¢4, A, and A, are functions of the «, § coordinates, the superscript &
referring to the k™ layer. The half thickness of the shell is given by &, while R, and Ry are
the radii of curvatures of the reference or mid surface in the « and f§ coordinate directions,
respectively. The surface metrics 4, and A, serve as variable radius of curvatures that trace
out the reference surface of a shell of arbitrary geometry. The displacement functions
assumed enable the satisfaction of zero values of transverse shear stresses at the free surfaces
a priori and allow for discontinous shear strains at the interfaces.

By imposing the continuity of the in-plane displacements and the transverse shear
stresses at the interfaces, the following relations are obtained for a specially orthotropic
laminate
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where y, = (Q45/0%s) and 4, = (Q4./Q%.), &, is the {-coordinate of the lower surface of the
J™ layer and the superscript | refers to the first layer which has been chosen to be the
reference layer for convenience. The constants Q.4 and Qss, whose values depend on fibre
orientation, represent the shear moduli (modulus of rigidity) for the transverse shear
stresses. The substitution of eqns (2) and (3) into eqn (1) results in an expressions for the
in-plane displacements in terms of only five variables, namely u), u;, w, ¢, and ¢;. The
expressions for the transverse deflections and in-plane displacements are to be substituted
into the following kinematic relations for strain
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The higher-order terms in W are the Von Karman nonlinear strains that account for large
deflection and are applicable only to the buckling problem. The additional nonlinear terms
involving U, and U given by Saada (1974) have been ignored as these displacements are
considered to be small for the present problem.

With particular reference to ¢, and & of eqns (4), it should be noted that the transverse
shear strains (and hence stresses) for the present theory are cubic because the in-plane
displacements U, and U, are cubic to start with. In the case of plates, the transverse shear
stress field is normally quadratic if the displacement field is cubic due to the differentiation
with respect to the thickness coordinate. It should be noted that for shells, in addition to the
differentiated term. the displacement fields also appear explicitly in the strain expressions.

The general governing equations are obtained by substituting the expressions for strain
and time derivatives of displacement that are in terms of the five variables, into Hamilton’s
principle. This gives
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The corresponding boundary conditions are given as follows. Along constant « curves,
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Correspondingly, along constant f curves,
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The stress resultants are given by
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]i = Z If‘
Ao

for i = 1.2....12: while the uniform bucking load resultants are N, = > N/ fori=1,2
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of which the terms under the summation sign are zero for & = 1. The usual constitutive
equations with plane-stress reduced elastic constants will be used for each orthotropic layer
of the laminate considered in the present analysis.

The buckling loads N,, N, and N, are the forces required to keep the shell in equilibrium
under the prevailing conditions. The equations (5) are linear despite the nonlinear defor-
mation (owing to large deflection W) of the shell due to the buckling load definitions given
in eqns (7). In order to obtain solutions, these loads are normally considered as eigenvalues
and are solved for in very much the same way as free vibration problems.

BUCKLING AND VIBRATION OF CYLINDRICAL SHELL PANELS

The theory outlined in this paper is applied to the buckling and vibration of specially
orthotropic cylindrical shell panels subjected to simply-supported boundary conditions.
For this particular case, the a-coordinate reduces to the x-coordinate which has been chosen
to run along the axis of the cylindrical shell, the f-coordinate is now the 8-coordinate which
traces a circumferential path while the {-coordinate being linear is left unchanged and is
orthogonal to x and 6. 1t should be noted that along the x-axis, the radius of curvature is
infinately large and hence the displacement and strain expressions in this direction reduce
to that given by the theory of Lee et al. (1990). The numerical results are presented for
(unless otherwise stated) shells of dimensions, R =5, Y = n/3 and [ = 25, the material
constants for each orthotropic layer are taken to be related as follows: E; = 25Eq,
Gt = 0.5F:, Gy = 0.2Er and v = 0.25, where L and T denote the directions along and
perpendicular to the fibre, respectively. For the buckling problem in particular, the in-plane
and shear loadings, N, and N,, respectively, are taken to be zero for simplicity. The simply-
supported (free in the in-plane normal directions) boundary conditions of the cylindrical
shell panel are satisfied by the following functions:

nx\ . (7m0

o = s (%))
. [7nx fide)

Uy = Uy SIN (/ )COS (ll/)
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where the coefficients of the functions are constants to solve for. The following three types
of shell panel arrangements are considered :

-

P,

i

(1) one-layer shells with fibres plied in the # direction;

(2) two-layer shells with layers of equal thickness and fibres parallel to the 8 and x
directions in the bottom and top layers, respectively ;

(3) three-layer shells of equal thickness with fibres plied in the ¢ and x directions in
the outer and central layers, respectively.

The critical buckling load. natural frequency and stresses are non-dimensionalized as
follows together with the additional definition of a performance gauging index ;

SO Ten . Ty
(O—-\.\' Gio- f\()) = QGLG’!‘{O-’”L) hS- (f\\ﬂ f();) = (LL"EUTi)hLS‘3
L L
' e _ N R
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EhS pheS* Evh h

where GPI refers to the General Performance Index, |o| is the magnitude of bending stress
within the bottom fibre of the shell in the circumferential direction, normally the largest of
all the components of stress for the cases considered, and w is the natural frequency.

The GPI is a measure of the natural frequency and stress predicting capability of a
theory. From a conservative standpoint, lower natural frequencies and larger stresses
indicate a more accurate model and, therefore, the GPI has been non-dimensionalized such
that it would be indicative of such cases. It should be noted that the GPI is a relative
measure and not an absolute one.

The in-plane bending stress has been chosen for the definition of the GPI instead the
out-of-plane transverse shear stress on account of the fact that unlike bending stresses,
various shell theories give maximum values of transverse shear stresses at different locations
along the thickness of the laminate. In order to evaluate the performances of shell theories
at fixed locations within the laminate, the in-plane bending stress (value largest at the free-
surface) has been chosen.

NUMERICAL RESULTS

The numerical results are presented in Tables 1--10. The natural frequencies and the
General Performance Index (GPI) for (907) orthotropic shells are indicated in Table 1. In
what follows. the higher-order shear deformation theory by Bhimaraddi (1984), the sim-
plified higher-order theory of Reddy and Liu (1985) and Di Sciuva’s (1987) shear defor-
mation theory will be denoted as HSDT, SHOT and DST, respectively, for convenience.
Over a large range of radius-to-thickness ratios S. the present theory predicts generally
lower values of natural frequency. @ although the GPI indicates better overall performance
by the HSDT. Considering the higher circumferential modes (m =2. n=1 and m = 2,
n = 2), the natural frequencies as predicted by the present theory at S = 4, are significantly
smaller than those of the other theories. The corresponding results for (90°/07) laminated
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Table 1. Natural frequencies and general performance index of (90 ) cylindrical orthotropic shell under

P. B. Xavier ¢ af.

sinusoidal loading

m=1.n=1 m—=1l.n=2 m=2n=1 =2 n=2
Model N o} GPI @ GPI @ GPI @ GPI
Bhimaraddi 14.32 311 14.44 3.05 38.59 0.96 38.56 0.96
Reddy and Liu 14.18 2.56 14.32 2.51 39.57 0.70 39.57 0.70
Di Sciuva 4 14.92 1.95 15.03 1.92 35.48 0.40 38.45 0.40
Present 14.21 3.00 14.33 294 37.90 0.91 37.88 0.91
14.40 103 14.61 295 47.28 0.80 4732 0.80
14.37 292 14.59 283 47.35 0.74 47.40 0.74
10 14.76 2.81 14.98 273 49.61 0.60 49.65 0.60
14.39 2.04 14.61 2.94 47.23 .79 47.27 0.79
11.65 290 12.10 261 46.22 0.88 46.28 0.88
11.65 3.%3 12.10 3.55 46.20 0.86 46.26 0.86
20 11.75 3.83 12.19 3.353 47.42 0.82 47.48 0.82
11.65 3.90 12.10 3.6l 46.21 0.88 46.27 0.88
7.82 5.7 9.22 4.12 34.06 1.28 34.13 1.27
7.82 5.73 9.23 4.09 34.06 1.27 34.13 1.26
50 7.83 5.77 9.23 4.12 34.25 1.26 34.33 1.26
7.82 5.79 9.22 4.12 34.06 1.28 34.13 1.27
5.83 7.40 9.00 3.04 2474 1.78 2485 1.76
5.83 7.37 9.01 3.03 2473 1.77 24.85 1.76
100 5.83 7.39 9.01 3.04 24.77 1.77 24.89 1.76
5.83 7.40 9.00 3.04 24.74 1.78 24.85 1.76
5.09 4.30 27.33 0.09 1145 3.74 1542 2.04
5.09 4.30 27.33 0.09 1145 374 15.42 2.04
500 5.09 4.30 27.33 0.09 11.45 .74 15.42 2.04
5.09 4.30 27.33 0.09 11.48 374 15.42 2.04

Table 2. Natural frequencies and General Performance Index
sinusoidal toading

of (90 0)

cylindrical laminated shell under

m=1n=1 mo=1l.n=2 =2 n= m=2n=2

Model S @ GPI (i GPI @ GPI @ GPI
Bhimaraddi 10.37 5.67 11,13 +4.87 32.06 1.54 32.33 1.51
Reddy and Liu 9.96 5.7 10.76 1.40 30,93 .46 31.26 1.43
Di Sciuva 4 11.08 496 11.82 433 36.46 1.28 36.67 1.26
Present 11.13 5.50 11.85 4.82 37.89 .64 38.10 1.62
7.76 7.17 8.97 S8 29.79 1.82 30.10 1.78

7.70 6.94 8.92 .09 29.46 1.76 29.77 1.72

10 7.88 7.03 9.08 .22 3147 1.68 31.76 1.65

7.87 7.16 9.06 5.32 31.40 1.79 31.69 1.76

5.94 8.70 814 4.47 23,54 2.32 24.87 225

593 8.56 8.13 139 2346 228 24.79 2.21

20 5.97 8.66 K.16 147 23.96 2.27 2428 2.21

5.96 8.70 8.13 1.49 2392 231 24.24 2.24

5.05 7.50 9.74 1.83 15.42 3153 15.99 3.27

5.04 7.45 9.73 1.81 15.40 3.51 15.98 3.25

50 5.05 7.50 9.74 1.83 15.46 352 16.03 3.26

5.05 7.50 9.74 1.83 15.46 353 16.03 3.27

S.7 4.05 12.97 0.64 11.04 487 12.27 391

S 4.04 12.97 0.63 11.04 4.85 12.27 3.90

100 5.71 4.05 12,97 .64 11.05 4.86 12.28 391

5.71 4.08 12.97 0.64 11.035 4.87 12.28 391

11.51 0.39 28.32 0.01 6.26 6.74 12.94 .52

11.51 0.39 28.32 0.01 6.26 6.74 12.94 1.52

500 11.51 0.39 28.32 0.01 6.26 6.7- 12.94 1.52

11.51 0.39 28.32 0.01 6.26 6.74 12.94 1.52

shells are shown in Table 2. For the cross-ply arrangement considered. the natural frequenc-
ies, @ of the SHOT, even for higher modes, are observed to be the lowest of all the theories
compared, despite the simplifications made as previously mentioned. However, the GPI of
the SHOT indicate that the stress predicting capability of the other models are better by
comparison. At S = 4, HSDT indicates the largest GPI for the lowest circumferential modes
(m=1,n=1andm = 1, n=2). For the same radius-to-thickness ratio, the higher modes
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Table 3. Natural frequencies and General Performance Index of (90 :0 790 ) cylindrical laminated shell under
sinusoidal loading

mr o =1 m=1.n=2 m=2.n=1 m=2,n=2

Model S ) GPI o) GPI M GP1 @ GP1
Bhimaraddi 12,39 333 12.77 3.29 32.57 1.13 32.68 1.12
Reddy and Liu 12.25 296 12,65 2.74 33.57 0.83 33.70 0.82
Di Sciuva 4 12.10 298 12.50 2.76 31.90 1.14 32.01 1.13
Present 12.00 393 12.45 3.66 34.88 1.58 34.98 1.57
13.36 321 13.93 291 4115 0.85 41.25 0.84

13.33 3.09 13.93 2.80 41.25 0.80 41.36 0.79

10 13.25 310 13.84 281 40.60 0.81 40.70 0.80

1299 RIRN RIN) 3.03 39.85 1.00 39.96 1.00

1137 393 12,53 3.21 42.60 0.94 42.72 0.94

1137 3.90 12.53 316 4258 0.93 42.71 0.92

20 11.34 392 12.50 318 42.26 091 42.38 0.91

1125 1.00 12.41 324 41.21 0.99 41.53 0.98

822 S.18 11.48 256 3298 1.33 33.19 1.31

822 513 11.49 2,58 3297 1.32 33.19 1.31

S0 822 S8 11.4% 2.56 3291 1.33 33.13 1.31

X220 319 11.47 2.56 3272 1.34 32.94 1.32

ER N 492 RIRR 1.30 2424 1.84 24.71 1.77

71 4.90 13.33 1.30 24.24 1.83 24.71 1.76

100 7l 49] 1333 1.30 24.22 1.84 24.70 1.76

711 492 13.33 1.30 24.19 1.84 24.66 1.77

1068 0.94 27.33 0.09 11.45 3.74 15.42 2.04

10.6% 0.94 27.33 0.09 11.453 3.74 15.42 2.04

500 10.68 0.94 27.33 0.09 11.45 374 15.42 2.04

10.68 0.94 27.33 0.09 11.45 3.74 15.42 2.04

(m=2.n=1and m = 2. n = 2)show that the present theory generally performs best. The
results to the natural frequencies.  and general performance, GPI of the theories for
(90 /0 /90 ) laminated. cross-ply shells are given in Table 3. At § = 4, the present theory
indicates the highest values of the GPI for all modes. although the DST predicts the lowest
values of natural frequencies for the higher modes (m =2, n=1 and m=2, n=2),
indicating that despite predicting higher values of natural frequencies at such modes, the
present theory predicts better circumferential bending stress thereby enhancing its GPI
magnitude.

The bending and shear stresses induced at the maximum amplitude of vibration, for
(90, (90 -0 ) and (90 0 90 ) shells, respectively, are shown in Tables 4-6. The results to
the shear stresses arc not discussed. as the maximum values as predicted by the various
theories do not occur at the same poeint along the thickness of the laminate unlike the
bending stresses. For computational convenience. the shear stresses were evaluated at points
at which all the models appeared to generally predict large values. Table 4 shows that the
HSDT predicts the largest values of circumferential bending stress, G,4(//2, ¥/2, Fh/2),
although Tables 5 and 6 indicate that it s the present theory that predicts the largest values
for the (90 -0 ) and (90 0 90 ) arrangements. Table 6 also shows that it is not sufficient
to use a first-order layerwise theory for thick shells as the HSDT and SHOT predict larger
values of bending stress as compared to the DST. Comparing the HSDT and SHOT, Tables
4-6 indicate that the simplifications of the SHOT would have a negligible effect on natural
frequency and stress prediction only at radius-to-thickness ratios of 20 or greater. At S = 4,
however, the simplifications result in the reduction of predicted circumferential bending
stresses. Goo(l 2. 2. —h 2) by approximately 24. 19 and 22% for single-layer, two-layer
and three-laver shells. respectively. Based on Tables 1- 3. the natural frequencies, @ are,
however. favourably smaller by 4% for the two-layer shell while the corresponding figures
for single-layer and three-layer shells are a mere 1%.

The variations ol natural frequencies and the GPI with the angle y subtended by the
ends of the shell at S = 4. are presented in Table 7. The present theory predicts the lowest
values of natural frequencies and the largest GPI over the whole range of shell depth
considered. Table 8 shows the variation of the natural frequencies and General Performance
Index with base layer-to-core modulus of elasticity ratios. With the exception of the values
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Table 4. Non-dimensionalized stresses in (90 ) cylindrical orthotropic shell under sinusoidal loading

a,, Gy T T To;
Model S UL TR U292 FhY) (0.0, Fhi2) (0. 472, 0) (172, 0. 0)
Bhimaraddi —0.01585 —2.0422 0.01150 0.00884 0.7155
0.03122 1.1918 —0.02925
Reddy and Liu —-0.01227 —1.6525 0.01325 0.01156 0.7169
4 0.03340 1.4855 —0.03310
Di Sciuva —0.00853 —1.3948 0.00693 0.00920 0.8859
0.03023 1.0100 —~0.03015
Present —~0.01496 —1.9401 0.01149 0.00893 0.7034
0.03174 1.2579 —0.02925
—0.01999 —3.1973 0.02406 0.02289 2.0306
0.05513 2.7613 —0.03201
—0.01852 —3.0506 0.02560 0.02451 2.0267
10 0.05631 2.8828 —0.03493
—0.01878 —3.0993 0.02311 0.02367 2.1774
0.05501 2.7283 —0.03235
—0.01984 —3.1814 0.02400 0.02288 2.0262
0.05524 2.7733 —0.03206
—0.01152 —3.7930 0.03409 0.02949 2.6907
0.07783 3.5517 —0.02907
—-0.01078 —3.7221 0.03574 0.03096 2.6889
20 0.07848 3.6146 —0.03143
—0.01136 —3.7814 0.03396 0.02984 2.7494
0.07785 3.5498 —0.02915
—0.01149 —-3.7905 0.03409 0.02950 2.6876
0.07785 3.5538 —0.02908
0.03367 —4.0000 0.04809 0.03254 2.9576
0.12875 3.9048 —0.01789
0.03396 —3.9725 0.04986 0.03404 2.9475
0.12903 3.9307 —0.01995
S0 0.03367 —4.0000 0.04808 0.03237 2.9619
0.12875 3.9049 —0.01790
0.03367 —4.0000 0.04809 0.03214 2.9552
0.12877 3.9049 —0.01789
0.11392 —4.0161 0.06606 0.03151 2.9982
0.20992 3.9777 —0.00036
0.11406 —4.0024 0.06790 0.035%4 2.9992
100 0.21005 3.9907 —0.00234
0.11392 —4.0161 0.06606 0.03014 3.0123
0.20992 3.9777 —0.00036
0.11392 —4.0161 0.06606 0.03200 2.9976
0.20992 39777 —0.00036
0.76064 —3.9848 0.20181 0.03265 3.0136
0.85694 4.0381 0.13524
0.76067 —3.9819 0.20370 0.03407 3.0138
500 0.85697 4.0406 0.13333
0.76064 —3.9848 0.20181 0.03265 3.0138
0.85694 4.0381 0.13524
0.76064 —3.9848 0.20181 0.03265 3.0107
0.85694 4.0381 0.13524

at £ /Er = 2. at S = 4, the present theory predicts the lowest values of the natural frequency
over the entire range. The GPI clearly indicates that the present model generally performs
the best over the range base layer-to-core modulus ratios, E,/E; and radius-to-thickness
ratios, S.

Results to the buckling of shells at S = 4.0 are presented in Tables 9 and 10 indicate
that the present theory generally predicts conservatively smaller critical buckling loads, N
for symmetric shell configurations. However, for the antisymmetric setup, the SHOT clearly
gives the most favourable results, followed by that of the HSDT. The layerwise theories do
not perform well in this case.

CONCLUSIONS

A performance gauging factor called the General Performance Index has been derived
to enable a quick assessment of the dynamic performance of shell theories. The index has
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Table 5. Non-dimensionalized stresses in (90 ;0 ) cylindrical laminated shell under sinusoidal loading

., Ton T Ty T
Model S U202 Fh2)y (2092 FhD) (0, 0. ¥41/2) (0. ¢/2, —h/4) (12,0, hj4)
Bhimaraddi —0.02566 —1.9524 0.03997 0.02397 0.0774
0.21011 0.1244 —0.01206
Reddy and Liu —0.02254 —1.6429 0.03760 0.02490 0.0863
4 0.21602 0.1451 —0.01516
Di Sciuva —0.02517 —1.9502 0.03868 0.02521 0.0808
0.20464 0.1152 —0.01133
Present —0.27402 —2.1808 0.03931 0.02459 0.0760
0.21052 0.1192 —0.01220
—0.02516 —2.1829 0.05806 0.03963 0.1328
0.34820 0.2091 —0.00748
—0.02409 —2.0847 0.05749 0.03936 0.1370
10 0.35289 0.2188 —0.00896
—0.02534 —2.2107 0.05793 0.03986 0.1349
0.34713 0.2086 —0.00734
—0.02565 —2.2452 0.05797 0.03962 0.1332
0.34820 0.2091 —0.00748
—0.01766 -2.1978 0.08109 0.05592 0.1437
0.55546 0.2312 0.01311
—0.01712 —2.1531 0.08117 0.05596 0.1461
20 0.55915 0.2364 0.01789
—0.01772 —2.2067 0.08104 0.05598 0.1443
).55523 0.2311 0.01314
—0.01778 —-2.2147 0.08103 0.05589 0.1439
0.55549 0.2312 0.01311
0.00700 —2.1584 0.14777 0.10207 0.1425
1.16832 0.2448 0.07924
0.00727 —2.1415 0.14824 0.10234 0.1436
1.17133 0.2470 0.07800
50 0.00700 —2.1600 0.14774 0.10213 0.1426
116831 0.2448 0.07925
0.00699 —2.1611 0.14774 0.10211 0.1425
1.16834 0.2448 0.07925
0.04820 —-2.1144 0.25865 0.17854 0.1354
218847 0.2573 0.19014
0.04839 —2.1062 0.25924 0.17922 0.1360
100 2.19123 0.2584 0.18889
0.04820 —2.1148 0.25864 0.17894 0.1354
0.20992 0.2573 0.19011
0.04820 —2.1151 0.25863 0.17893 0.1354
2.18848 0.2573 0.19011
0.37725 —1.8556 1.14583 0.79394 0.0762
10.34906 0.3465 1.07734
0.37737 —1.8541 1.14652 0.79422 0.0764
500 10.35163 0.3467 1.07614
0.37725 - 1.8556 1.14582 0.79393 0.0762
10.34906 0.3465 1.07734
0.37725 —1.8556 1.14583 0.79392 0.0762
10.34906 0.3465 1.07734

been non-dimensionalized such that it would give a large value for a theory predicting large
magnitudes of stresses and low values of natural frequency according to conservative
natural frequency and stress prediction.

Numerical results show that while the HSDT performs comparably for (90%) ortho-
tropic shells, the present theory clearly gives the largest values of the GPI for (90°/0”) and
(90°/07/90") laminated shells. indicating that it would be a better choice for multi-layer
shells. The SHOT predicts the lowest values of natural frequency for two-layer cross-ply
shells. The simplifications of the SHOT result in a 24% reduction in the magnitude of
circumferential bending stress. d,,(/:2. /2, —h;/2) when compared to the otherwise similar
HSDT. The corresponding reduction for the (90°/0") and (907/07/90°) arrangements are
19 and 22%, respectively. However, the simplifications favour the SHOT for natural
frequencies, the reduction being [ % for one-layer and two-layer shells while the figure for
a (907/0°) laminated shell is 4%. Results also show that irrespective of the degree of
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Table 6. Non-dimensionalized stresses in (90" /0 /90°) cylindrical laminated shell under sinusoidal loading

Gre [ Tw T To;
Model S W22 FhY) W02 ThD) (0.0, Fh2)  ©,0/2 —h3) (12,0, —k/3)
Bhimaraddi —0.01981 —1.7342 0.02931 0.01343 0.5303
0.02270 1.0174 —0.01428
Reddy and Liu —0.01668 —1.4198 0.02816 0.01309 0.4586
4 0.02486 1.2443 —0.01769
Di Sciuva —0.01625 —1.3951 0.02768 0.01319 0.4967
0.02189 0.9484 —0.01371
Present —0.20670 —1.8297 0.02941 0.01351 0.5560
0.02427 1.1890 —0.01476
—0.02599 —2.8982 0.04516 0.02311 1.1296
0.04356 2.4849 —0.01111
—0.02476 —2.7795 0.04556 0.02332 1.1018
10 0.04452 2.5784 -0.01314
—0.02453 —2.7553 0.04452 0.02299 1.1135
0.04264 2.3974 —0.01064
—0.02565 —2.8618 0.04507 0.02291 1.0994
0.04336 2.4742 —0.01086
—0.02430 —3.6583 0.06764 0.03412 1.5033
0.06244 3.4201 0.00376
—0.02369 —3.6012 0.06845 0.03447 1.4902
20 0.06296 3.4688 0.00222
—0.02377 —3.6071 0.06741 0.03407 1.4964
0.06202 3.3792 0.00396
—0.02395 —3.6238 0.06751 0.03397 1.4818
0.06213 3.3917 0.00394
0.00157 —3.9610 0.12510 0.05969 1.6565
0.09614 3.8910 0.05782
0.00181 —-3.9392 0.12612 0.06012 1.6517
0.09636 39114 0.05649
50 0.00157 —3.9518 0.12506 0.05969 1.6552
0.09605 3.8825 0.05782
0.00165 —3.9530 0.12507 0.05966 1.6517
0.09606 3.8834 0.05782
0.05013 —3.9783 0.21756 0.10072 1.6739
0.14600 4.0018 0.14968
0.05025 —3.9677 0.21865 0.10114 1.6717
100 0.14611 4.0123 0.14846
0.05015 —3.9760 0.21756 0.10074 1.6736
0.14598 3.9996 0.14970
0.05015 —3.9762 0.21756 0.10072 1.6727
0.14598 4.0000 0.14970
0.44275 —3.8195 0.95337 0.42814 1.6646
0.53904 4.2028 0.88530
0.44277 —3.8175 0.95451 0.42862 1.6643
500 0.53907 4.2050 0.88414
0.44275 —3.8195 0.95337 0.42813 1.6646
0.53904 4.2027 0.88530
0.44275 —3.8195 0.95337 0.42810 1.6646
0.53904 4.2027 0.88530
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Table 7. Natural frequencics and General Performance Index of (90 /00 90 ) cylindrical laminated shell under
sinusoidal loading

Model S W o= (r'3) W=(r2) W= (27:3) W = (5n:6)
@ GPI @ GPI1 @ GPI @ GPI
Bhimaraddi 12.39 3.53 6.03 7.43 343 11.40 278 6.54
Reddy and Liu 12.25 2.96 5.95 6.51 341 10.07 2.78 377
Di Sciuva 4 12.10 2.98 5.92 6.71 3.40 10.54 2.77 6.08
Present 12.06 393 581 8.03 3.36 11.73 2.77 6.44
13.36 3.21 5.89 7.38 4.03 6.87 4.15 2.07
13.33 3.09 5.89 7.13 4.03 6.42 4.15 2.00
10 13.25 310 S.88 7.24 4.03 6.78 4.15 2.04
12.99 3.35 S.81 7.49 4.02 6.85 4.15 2.05
11.37 398 5.44 6.80 5.05 316 5.79 0.63
11.37 3.90 S.44 6.70 5.05 312 5.79 0.62
20 11.34 3.92 5.44 6.77 5.05 315 5.79 0.62
11.28 4.00 5.42 6.81 5.05 315 5.79 0.63
8.22 SR 6.21 3.30 7.62 0.77 9.11 0.04
.22 S.15 6.21 .32 762 (.77 911 0.04
50 8.22 517 6.21 331 7.62 0.77 9.11 0.04
8.20 5.19 6.21 3.31 7.62 0.77 9.11 0.04
7.11 492 8.14 1.30 10.70 0.21 12.88 0.06
7.11 4.90 8.14 1.30 10.70 0.21 12.88 0.06
100 7.1 491 8.14 1.30 10.70 0.21 12.88 0.06
7.11 4.92 8.14 1.30 10.70 0.21 12.88 0.06

Table 8. Natural frequencies and General Performance Index of (90 -0 90 ) cylindrical laminated shell under
sinusoidal loading

Model S E E =2 E E =5 by By =10 E E, =15
@ GP1 @ GPI @ GPIL @ GPI
Bhimaraddi 23.34 191 20.40 2.33 16.95 2.65 14.87 2.94
Reddy and Liu 24.02 2.08 20.12 211 16.74 2.34 14.70 2.55
Di Sciuva 4 24.13 2.03 20.10 2.21 16.62 2.42 14.55 2.61
Present 2378 213 19.70 2.45 16.29 2.87 14.32 325
17.56 2.72 16.39 2.89 15.36 2.99 14.58 3.07
17.54 2.63 16.36 2.80 15.32 2.90 14.54 297
10 17.53 272 16.35 2.86 15.29 295 14.49 3.00
17.47 2.74 16.23 292 15.10 3.05 14.26 3.16
13.06 3.48 12.40 3.71 12.02 3.82 11.77 388
13.07 3.41 12.40 3.66 12.01 377 11.77 3.82
20 13.06 3.47 12.39 3.71 12.00 3.81 11.75 3.86
13.04 3.48 12.37 372 11.96 3.84 11.68 391
9.82 385 8.99 4.47 8.62 4.80 8.44 497
9.82 3.81 8.99 4.44 8.62 4.77 8.44 4.94
50 9.82 3.84 8.99 447 8.62 4.80 8.44 4.96
9.18 3.85 8.99 4.47 8.61 4.80 8.43 4.97
9.85 2.68 8.49 3.52 7.83 4.08 7.51 443
9.86 2.67 8.49 3.51 7.84 4.07 7.51 442
100 9.85 2.68 8.49 352 7.83 4.08 7.51 443
9.85 2.68 8.49 3.82 7.83 4.08 7.51 443

SAS 32/23-1
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Table 9. Critical buckling loads, ¥ for the various laminate configurations of cylindrical
shells under sinusoidal loading with varying modulus ratios (h;, = A, = h3)

Model E,/E, (90%) (90°/0°) (90°/0°/90°)
Bhimaraddi 1.1780 0.7537 0.8737
Reddy and Liu 1.1427 0.7239 0.8445
Di Sciuva 5 1.2768 0.8714 0.8347
Present 1.1598 0.8302 0.8323

2.3428 1.3435 1.7368
2.2732 1.2674 1.6807
10 2.5395 1.5465 1.6598
2.3066 1.5146 1.6513
3.5069 1.8861 2.5996
3.4032 1.7605 2.5168
15 3.8015 2.1644 2.4848
3.4528 2.1497 2.4702
4.6711 2.4087 3.4626
4.5333 2.2317 3.3530
20 5.0676 2.7575 3.3096
4.5989 2.7615 3.2889

Table 10. Critical buckling loads, N for the various laminate configurations of cylindrical shells
under sinusoidal loading with varying thickness ratios (E/Er = 25)

Model hath, (90°/0°) (90°/0°/90°) (90°/0°/90°)
hy/h, = 0.5 hyh, = 1.0
Bhimaraddi 5.3546 5.5626 5.6071
Reddy and Liu 5.0330 5.4288 5.4396
Di Sciuva 0.1 6.3571 5.8032 5.7931
Present 5.2566 5.4059 5.3829
4.0130 47279 4.9078
3.6580 4.6828 4.7557
0.5 4.9305 4.7446 4.7299
4.5219 4.6892 4.6339
2.9124 3.7587 43129
2.6850 3.8149 4.1770
1.0 3.3291 3.7731 4.1226
3.3517 3.7837 4.0960
1.7259 2.9864 3.1406
1.6844 2.9413 3.0448
5.0 1.7646 2.9535 3.0791
1.7319 3.0083 3.1263

shallowness or the base layer-to-core modulus of elasticity, the present theory is generally
the most suitable theory for natural frequency and stress prediction.
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